Back to class index
float3[Class Summary]
x
y
z
zero[static][const]
one[static][const]
unitX[static][const]
unitY[static][const]
unitZ[static][const]
nan[static][const]
inf[static][const]
ctor (+5 overloads)
ptr() (+1 overload)
operator[](index) (+1 overload)
At(index) (+1 overload)
operators +,-,*,/(v)[const]
operators +=,-=,*=,/=(v)
Add/Sub/Mul/Div(v)[const] (+1 overload)
xx/xy/xz/..()[const]
xyz/xzy/yzx/..()[const]
Swizzled(i,j)[const] (+2 overloads)
SetFromScalar(scalar)
Set(x,y,z)
ToPos4()[const]
ToDir4()[const]
Length()[const]
LengthSq()[const]
Normalize()
Normalized()[const]
ScaleToLength(newLength)
ScaledToLength(newLength)[const]
IsNormalized(epsilonSq)[const]
IsZero(epsilonSq)[const]
IsFinite()[const]
IsPerpendicular(other,epsilon)[const]
Equals(other,epsilon)[const] (+1 overload)
SumOfElements()[const]
ProductOfElements()[const]
AverageOfElements()[const]
MinElement()[const]
MinElementIndex()[const]
MaxElement()[const]
MaxElementIndex()[const]
Abs()[const]
Neg()[const]
Recip()[const]
Min(ceil)[const] (+1 overload)
Max(floor)[const] (+1 overload)
Clamp(floor,ceil)[const] (+1 overload)
Clamp01()[const]
Distance(point)[const] (+9 overloads)
DistanceSq(point)[const]
Dot(v)[const]
Cross(v)[const]
OuterProduct(rhs)[const]
Perpendicular(hint,hint2)[const]
AnotherPerpendicular(hint,hint2)[const]
Reflect(normal)[const]
Refract(...)[const]
ProjectTo(direction)[const]
ProjectToNorm(direction)[const]
AngleBetween(other)[const]
AngleBetweenNorm(normalizedVector)[const]
Decompose(...)[const]
Lerp(b,t)[const]
FromScalar(scalar)[static]
FromString(str)[static]
ScalarTripleProduct(u,v,w)[static]
Lerp(a,b,t)[static]
Orthogonalize(a,b)[static] (+1 overload)
AreOrthogonal(a,b,epsilon)[static] (+1 overload)
Orthonormalize(a,b)[static] (+1 overload)
AreOrthonormal(a,b,epsilon)[static] (+1 overload)
RandomDir(lcg,length)[static]
RandomSphere(lcg,center,radius)[static]
RandomBox(...)[static] (+1 overload)

float3::Dot

Syntax

float float3::Dot(const float3 &v) const; [4 lines of code]

Computes the dot product of this and the given vector.

The dot product has a geometric interpretation of measuring how close two direction vectors are to pointing in the same direction, computing angles between vectors, or the length of a projection of one vector to another.

Return Value

x*v.x + y*v.y + z*v.z.

Performance

This function could not be profiled. Either the function body is too small, or appropriate function parameters could not be generated.
This function does not perform dynamic memory allocation.

See Also

AngleBetween(), ProjectTo(), ProjectToNorm(), Cross(), OuterProduct(), ScalarTripleProduct().

Leave a Comment

Name:
Comments:
Captcha:captcha image Type in the black symbols:
Back to class index